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1. Introduction

Double-diffusive convection, which occurs because of

temperature and concentration difference under gravity,

is observed in many fields of disciplines, for example,

electrochemistry, geophysics and so on [1–4]. Various

authors have theoretically and numerically studied the

double-diffusive convection in a fluid-saturated porous

enclosure [5–13], giving analytical solutions in the tall

cavity and numerical solutions under constant heat and

mass fluxes. When the two fluxes have an opposite effect

in buoyancy, we found that the numerical calculations

gave oscillatory solutions [8,9]. The competition between

heat and mass transfer with different diffusivities plays

an important role to generate oscillations, which occur

even at low Rayleigh numbers. In our previous report

[8], we showed the oscillation only at a few discrete cases

with related parameters. Therefore, it is not yet clear

what ranges in parametric values are necessary to make

convection oscillatory, and how the nature of oscillation

varies with the related three parameters: Rayleigh

numbers, Lewis numbers and buoyancy ratios. In this

paper we have evaluated the oscillation range numeri-

cally by extending the values of the three parameters,

and continuously varying those values. Oscillatory

double-diffusive convection occurring without inertia

term in a porous enclosure will shed light on further

understanding of this kind of competitive and coopera-

tive work by two forces, temperature and concentration

differences.

2. Problem statements

The geometry used in the mathematical model is

given in Fig. 1. We consider a two-dimensional vertical

enclosure filled with a homogeneous fluid-saturated

porous medium of aspect ratio A. The top and bottom

walls are insulated. Constant heat flux KT and mass flux

Kc are prescribed through the vertical walls. The mo-

mentum conservation in the Darcy regime with Bous-

sinesq approximation is used with the following

equations:

u ¼ �rP � Rcðh � N/Þey : ð1Þ

The equation of continuity:

r � u ¼ 0: ð2Þ

The equations for the mass and thermal energy conser-

vation:

e
oh
ot

þ u � rh ¼ r2h ð3Þ

and
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r
o/
ot

þ u � r/ ¼ Ler2/: ð4Þ

The boundary conditions:

oh
ox

¼ �1;
o/
ox

¼ �1; u ¼ 0 and
ov
ox

¼ 0 at jxj ¼ 1 ð5Þ

and

oh
oy

¼ 0;
o/
oy

¼ 0; v ¼ 0 and
ou
oy

¼ 0 at jyj

¼ A: ð6Þ
The initial conditions:

h ¼ 0; / ¼ 0 and u ¼ 0 at t ¼ 0: ð7Þ

The dimensionless parameters are defined as follows:

A ¼ H
h
; Le ¼ j

D
; Rc ¼

kgbKch2

mD

and N ¼ aKT

bKc

:

ð8Þ

Governing equations are solved numerically with the

boundary and initial conditions by the finite difference

method. The governing equations and the boundary

conditions are discretized over a network of 62 	 302

grids in uniform spacing. No grid point is set on the

physical boundaries (jxj ¼ 1 and jyj ¼ A). The first and

end grid points are put at a distance of half a grid space

away from the boundaries. Boundary conditions at the

walls are given on these points. The numerical scheme

used here is second-order accurate in space and first-

order accurate in time. The matrices are solved under

the given boundary conditions by the conjugate gradient

method. For more details, see [8].

3. Results and discussion

When the heat flux is applied to the system in the

opposite direction from the mass flux, the convective

Nomenclature

A aspect ratio (dimensionless)

D solute diffusivity (m2 s�1)

f non-dimensional frequency

(dimensionless)

g acceleration of gravity (m s�2)

2h enclosure width (m)

2H enclosure height (m)

k permeability (m2)

Le Lewis number (dimensionless)

N buoyancy ratio (dimensionless)

Nu Nusselt number (dimensionless)

P pressure (dimensionless)

Rc Rayleigh–Darcy number (dimensionless)

S power spectrum intensity

(dimensionless)

t non-dimensional time (dimensionless)

u non-dimensional velocity vector ¼ ðu; vÞ
(dimensionless)

x non-dimensional horizontal coordinate

(dimensionless)

y non-dimensional vertical coordinate

(dimensionless)

Greek symbols

a coefficient of thermal expansion (K�1)

b coefficient of concentration expansion

(m3 mol�1)

� porosity ratio (dimensionless)

/ non-dimensional temperature

j thermal diffusivity (m2 s�1)

Kc horizontal concentration gradient prescribed

on the side wall (mol m�4)

KT horizontal temperature gradient prescribed on

the side wall (K m�1)

m kinematic viscosity (m2 s�1)

h non-dimensional concentration

(dimensionless)

r heat capacity ratio (dimensionless)

Fig. 1. The geometry of the porous enclosure.
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flow will be promoted in the same direction. If the two

fluxes are in the same direction, the convective flow by

the thermal flux is disturbed from that by the mass flux,

resulting in complex convection. All the calculations in

this paper are concerned with the latter case. The aspect

ratio A is one of the key parameters to have the oscil-

lating solution in numerical calculations under these

conditions; the oscillation does not take place in the case

of A ¼ 1 when Rc is less than 200. In this paper, only the

results obtained at A ¼ 5 are shown, though computa-

Fig. 2. Oscillations of Nu and their power spectra obtained in the numerical calculations for various N at Rc ¼ 50 and Le ¼ 10. fn
shows fundamental frequency peaks. ðaÞ N ¼ 0:85; ðbÞ N ¼ 0:80; ðcÞ N ¼ 0:75; ðdÞ N ¼ 0:65.
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tional results were obtained for other aspect ratios. In

order to eliminate the first transient effect, the calcula-

tions with long enough time, t ¼ 100, were performed.

Oscillatory convection is found in the range between

two critical values of the buoyancy ratio N, Nmin and

Nmax. This N is expected to have a significant effect on

the characterization of the oscillation. Fig. 2 shows the

time-development of the oscillations of Nu for various N

at Rc ¼ 50 and Le ¼ 10 and their power spectra after the

oscillation is fully developed. FFT was applied to a set

of 2048 points in time(18:12 
 t 
 100). The oscillation

range is 0:64 
 N 
 0:86 under these conditions. When

N is equal to 0.85 or 0.80, only a fundamental peak and

its harmonics are observed. The fundamental peak for

the smaller N shifts to the lower frequency. At N ¼ 0:75,
two fundamental peaks, their combinations, and some

other peaks are observed. When the buoyancy ratio N

approaches Nmin (N ¼ 0:65), the convection becomes

extremely complex with growing incommensurate peaks.

The oscillation takes place not only with the pa-

rameters explained in the above but also with other

combinations of N, Le and Rc. Fig. 3 shows the oscil-

lating region of the convection in maps of N vs. Le for

various Rc. Nmin and Nmax are determined within error of

jDN j ¼ 0:01 by the numerical calculations. The maps are

shown only for Le � 1 because almost all fluids have the

property of Le > 1 and that the governing equations are

symmetrical for h and /. While the oscillatory convec-

tion does not take place at Le ¼ 1 even for the large

Rc ð< 300Þ as indicated in the map, the oscillation is

found for small Rc ð� 50Þ at Le � 2. The oscillation

range of N is very small when Le is close to 1, because

the system may become similar to that having the single

diffusive component. The oscillatory convection does

not take place at Le ¼ 1 even for the large Rc ð< 300Þ as

indicated in the map. The oscillation range becomes

large as Le increases, and it becomes saturated around

Le ¼ 10–20 in any Rc. Since the condition of large Le

and Rc means that the system is governed almost only by

the single diffusive component, the oscillation is also

diminished. Oscillating convection is observed even at N

equal to 1.0 in the present calculation when Rc is larger

than 200, though Nu ¼ 1 is the exact solution from the

analytical solution at N ¼ 1 [7,8]. Since this solution is

on a critical balance of the diffusion of heat and mass,

the oscillation may take place in the numerical calcula-

Fig. 3. The parameter range in N–Le map to give the oscillating solutions in the numerical calculations at: (a) Rc ¼ 50; (b) Rc ¼ 100;

(c) Rc ¼ 200; (d) Rc ¼ 300.
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tion. Outside the oscillation range, the analytical solu-

tion shown in [8] can be used to evaluate Nu and Sh.
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